

CERTIFICATION

AOAC Research Institute Performance Tested MethodsSM

Certificate No.

010902

The AOAC Research Institute hereby certifies the method known as:

BAX® System PCR Assay for Yeast and Mold

manufactured by

Hygiena 2 Boulden Circle New Castle, DE 19720 USA

This method has been evaluated in the AOAC Research Institute *Performance Tested Methods*SM Program and found to perform as stated in the applicability of the method. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods*SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Issue Date

December 3, 2023

Scott Coates, Senior Director
Signature for AOAC Research Institute

Scott Crates

Expiration Date

December 31, 2024

AUTHORS

ORIGINAL VALIDATION: Frank Burns, Bridget Andaloro, Lois Fleck,

Eugene Davis, George Tice, and Morgan Wallace

MODIFICATION JULY 2013: Steve Hoelzer, F. Morgan Wallace, Lois Fleck, Deana DiCosimo, Jacqueline Harris, Bridget Andaloro, Andrew Farnum,

Eugene Davis, and Jeff Rohrbeck

SUBMITTING COMPANY

DuPont ESL Building 400

Route 141 & Henry Clay Road

Wilmington, DE 19880-0400

CURRENT SPONSOR

Hygiena 2 Boulden Circle New Castle, DE 19720

METHOD NAME

BAX® System PCR Assay for Yeast and Mold

Formerly known as DuPont™ BAX® System PCR Assay for Yeast and Mold

CATALOG NUMBERS

KIT2015 (kit); KIT2014 (supplement)

INDEPENDENT LABORATORY

Cherney Microbiological Services

1110 Huron Road

Green Bay, WI 54311 USA

APPLICABILITY OF METHOD

Target organism - Yeast and Mold (all genra, all species).

Matrixes - (25 g) - Yogurt, corn starch, milk-based powdered infant formula

Performance claims - Threshold detection of contaminating fungi in specified matrixes that is statistically indistinguishable from the FDA-BAM method for detecting Yeast and Mold [2].

REFERENCE METHOD

Tournas, V., Stack, M.E., Mislivec, P.B., Koch, H.A. and Bandler R. 1998. Bacteriological Analytical Manual Online. Revised 4/2000. US Food & Drug Administration, Center for Food Safety & Applied Nutrition. Chapter 18, Yeasts, Molds and Mycotoxins. (2)

ORIGINAL CERTIFICATION DATE

January 29, 2009

CERTIFICATION RENEWAL RECORD

Renewed Annually through December 2024.

METHOD MODIFICATION RECORD

- 1. July 2013 Level 2
- 2. March 2017 Level 2
- January 2018 Level 1
- May 2019 Level 1 4.
- 5. December 2021 Level 1
- November 2022 Level 1
- December 2023 Level 1

SUMMARY OF MODIFICATION

- Addition of Thermal Block for automated sample lysis.
- Name change from DuPont Nutrition & Health to Qualicon Diagnostics LLC., a Hygiena company.
- 3. Editorial update of labels, insert, and documents to Hygiena.
- Update to inserts and corporate address change. 4.
- 5. Updates to BAX manuals for Q7 and X5.
- 6. Editorial changes.
- Addition of documents.

Under this AOAC Performance Tested MethodsSM License Number, 010902 this method is distributed by: NONE

Under this AOAC Performance Tested MethodsSM License Number, 010902 this method is distributed as: NONE

PRINCIPLE OF THE METHOD (1)

Fungal Cell Disruption – Fungal cells are disrupted and their DNA is sheared into multiple pieces using a mechanical shearing device. PCR Amplification - The BAX® system Yeast and Mold test kit uses the Polymerase Chain Reaction (PCR) to amplify specific fragments of fungal DNA, which are present in multiple copies per cell and are stable and unaffected by growth environment. The fragments are genetic sequences that are unique to the fungal genome, thus providing a highly reliable indicator that the organism is present. The BAX system simplifies the PCR process by combining the requisite primers, polymerase and nucleotides into a stable, dry, manufactured tablet already packaged inside the PCR tubes. After amplification, these tubes remain sealed for the detection phase, thus significantly reducing the potential for contamination with one or more molecules of amplified PCR product [2].

Fluorescent Detection - The automated BAX system uses fluorescent detection to analyze PCR product. Each PCR tablet contains a fluorescent dye, which binds with double-stranded DNA and emits a signal in response to excitation light. During the detection phase, the temperature of the samples is slowly increased to denature the DNA. This releases the dye and causes a drop in emission signal. The BAX system measures the denaturation temperature and the magnitude of fluorescent signal change [3]. An analysis by the BAX® System software algorithm then evaluates that data to determine a positive or negative result which is displayed as described below.

DISCUSSION OF THE ORIGINAL VALIDATION STUDY (1)

The BAX System PCR Assay for Screening Yeast and Mold demonstrates slightly, though not statistically significantly, greater sensitivity than the reference FDA BAM plating method. The test kit can be tuned to achieve comparable threshold level contamination detection when compared with plating methods by adjusting the amount of sample homogenate added to the growth/disrupter tube(s). Since by its nature, the BAX assay is a +/- result whose sensitivity is determined by the amount of sample homogenate evaluated, its use is limited in cases where a product of interest is frequently contaminated at a level near the specified cutoff. In such cases, the time saved by performing the rapid test will often be negated by having to perform many reference method analyses to determine the true level of contamination before product can be released. Conversely, the test kit is most useful in the testing of product where either there is usually no fungal contamination of the food matrix, or where if a fungal contaminate is present, it is there in levels much greater than the specified acceptable cutoff level. In both of these cases, significant time savings can be achieved as a faster release of most lots of product will be possible.

Initial studies performed on soy-based infant formula revealed sporadic low level positive results on non-spiked samples. The sample matrix for this sample type could not be confirmed as culture positive. It is possible that these false positive results are due to a particular property of this product type associated with it's method of manufacture. Soy protein is isolated in part through alcohol precipitation steps. This alcohol preparation will have as a potential side effect the preservation of naturally occurring fungal DNA that may survive through disruption and thus lead to false positive results using this test kit.

The signal seen in this case is a weak positive, and an end user could potentially adjust the target to target plus internal control peak ratio that they would accept as a positive result from the assay. Should a user desire to internally validate a protocol of this nature, they should contact Qualicon for assistance. Because the modification will likely be product specific, this alternative protocol will not be validated through the AOAC-RI validation process. Other plant material produced in a similar fashion to soy protein isolate destined for soy-based infant formula with an early in the production process alcohol-based extraction could demonstrate similar results. Due to the sensitivity of the assay, as few as 10 intact fungal genomes in a disrupter tube following the incubation step would be expected to result in a low level positive result. Fungal DNA in foods at any level would not normally be detected by the assay as validated in this study report due to the fragility of nucleic acid in aqueous environments. Since the methods validated in this study only used the enriched protocol (as opposed to the non-AOAC validated direct testing method described in the BAX ® User Guide) that included a 44 hr enrichment step in the disrupter tubes, any free DNA from non-viable cells would be expected to be degraded and not detected. It is only when the fungal DNA is precipitated and preserved in matrixes such as a protein isolate that there is the possibility of a false positive event.

In food matrixes that can start out with a high fungal burden (such as the raw materials for corn starch), Qualicon customers have not found false positive results to be a problem, since any contaminating DNA is not protected and is degraded in either the aqueous starch preparation process of in the BAX ® enrichment process.

Table 1. BAX sy	stem inclusivity (Yea	st and Mold assay) (1)		
Source	Strain	Source	ID	BAX Result
ATCC	18577	Soil	Debaryomyces ploymorphus	POS
ATCC	10259	Unknown	Candida albicans	POS
ATCC	14056	Human	Candida tropicalis	POS
ATCC	9451	Air	Rhodotorula mucilaginosa	POS
ATCC	15125	Unknown	Rhodotorula glutinis	POS
ATCC	10651	Buttermilk	Pichia fermentans Lodder	POS
ATCC	34517	Raw Sugar	Zygosaccharomyces rouxii	POS
ATCC	36240	Grapes	Torulaspora delbrueckii	POS
ATCC	76455	Unknown	Saccharomyces cerevisiae	POS
ATCC	6989	Cheese	Penicillium roquefortii	POS
ATCC	32079	Rotten Orange	Penicillium italicum	POS
ATCC	34928	Sweet Potato	Rhizopus stolonifer	POS
ATCC	26195	Sand	Geotrichum candidum	POS
ATCC	18003	Soil	Trichothecium roseum	POS
ATCC	36963	Soil	Eurotium repens var. columnaris	POS
ATCC	200095	Asparagus	Fusarium oxysporum f. sp. asparagi	POS
ATCC	20476	Plum Tree	Trichoderma viride	POS
ATCC	34892	Fermented Red Rice	Monascus purpureus	POS
ATCC	34668	Carrot Seed	Cladosporium cladosporioides	POS
ATCC	13696	Unknown	Aspergillus parasiticus	POS
ATCC	1011	Unknown	Aspergillus oryzae	POS
ATCC	10058	Dung	Aspergillus clavatus	POS
ATCC	10864	Chinese Galls	Aspergillus niger	POS
ATCC	204446	Tomato	Botrytis cinerea bc-1	POS
ATCC	28987	Onion	Cladosporium herbarum	POS
ATCC	10141	Peas	Acremonium strictum	POS
ATCC	6663	Unknown	Alternaria alternata	POS
ATCC	24905	Rice Fermentation	Amylomyces rouxii	POS
ATCC	28064	Unknown	Anthrodema benhamiae	POS
ATCC	36607	Clinical	Aspergillus fumigatus	POS
ATCC	10535	Painted Pine Board	Aspergillus niger	POS
ATCC	14895	Soy Sauce	Aspergillus oryzae	POS
ATCC	24951	Unknown	Emmonsia crescens	POS
ATCC	48112	Unknown	Fusarium oxysporum	POS
ATCC	16222	Wheat Field Soil	Geomyces pannorum var. pannorum	POS
ATCC	34614	Clotted Carrot	Geotrichum candidum	POS
ATCC	10333	Unknown	Neurospora crassa	POS
ATCC	10002	Unknown	Penicillium chrosogenum	POS
ATCC	9179	Culture Contaminant	Penicillium notatum	POS
ATCC	10110	Cheese	Penicillium roquefortii	POS
ATCC	36779	Unknown	Pilaira anomala	POS
ATCC	22959	Unknown	Rhizopus oligosporus	POS
ATCC	66034	Unknown	Rhizopus stolonifer	POS

ATCC	14204	I I was a re	Canadhaireachanalái	000
ATCC	14284	Human	Sporothrix schenckii	POS POS
ATCC ATCC	9182 28185	Unknown Unknown	Stachybotrys chartarum	POS
		Unknown	Trichophyton mentagrophytes	
ATCC	9773		Yarrow lipolytica	POS
DuPont	FS34.3	Buttermilk Biscuit Mix Peanut Butter Cookie Mix	Alternaria alternate	POS
DuPont	FS37.4		Alternaria infectoria	POS
DuPont	FS31.3	Three Cheese Biscuit Mix	Aschersonia sp	POS
DuPont	FS34.5	Buttermilk Biscuit Mix	Aschersonia sp	POS
DuPont	FS20.1	Raisins	Aspergillus awamori	POS
DuPont	FS64.1	Nut & Berry Mix	Aspergillus awamori	POS
DuPont	FS9.1	Brown rice flour	Aspergillus candidus	POS
DuPont	FS31.5	Three Cheese Biscuit Mix	Aspergillus candidus	POS
DuPont	FS55.1	Corn Grits	Aspergillus candidus	POS
DuPont	FS28.1	Flour - Bread	Aspergillus flavus	POS
DuPont	FS65.1	Candied Pecans	Aspergillus flavus	POS
DuPont	FS29.3	Unbleached Flour	Aspergillus flavus	POS
DuPont	FS66.2	Shelled Pecan Halves	Aspergillus flavus	POS
DuPont	FS1.2	Oregano	Aspergillus phoenicis	POS
DuPont	FS2.1	Sesame Seeds	Aspergillus phoenicis	POS
DuPont	FS19.1	Cereal	Aspergillus pseudodeflectus	POS
DuPont	FS53.4	Buckwheat Pancake Mix	Bipolaris micropus	POS
DuPont	FS48.1	Water Crackers	Bipolaris micropus	POS
DuPont	FS49.1	Raisins	Bipolaris micropus	POS
DuPont	FS12.1	Rolled Oats	Bipolaris panici-milacei	POS
DuPont	FS31.2	Three Cheese Biscuit Mix	Bipolaris panici-milacei	POS
DuPont	FS16.1	Dried Basil & Tomato	Candida krissii	POS
DuPont	FS14.1	Crackers	Candida osormensis	POS
DuPont	FS25.1	Thyme	Cryptococcus albidus	POS
DuPont	FS59.2	French Thyme	Cryptococcus albidus	POS
DuPont	FS28.3	Flour - Bread	Cryptococcus alter	POS
DuPont	FS33.1	Cookie Mix	Cryptococcus alter	POS
DuPont	FS50.1	Honey Butter Biscuit Mix	Cryptococcus alter	POS
DuPont	FS3.2	Rosemary	Cryptococcus oeirensis	POS
DuPont	FS6.1	Cereal	Cryptococcus sp	POS
DuPont	FS30.2	Cornbread & Muffin Mix	Cryptococcus sp	POS
DuPont	FS15.1	Cheese	Debaromyces hansenii hansenii	POS
DuPont	FS17.1	Cheese	Debaromyces hansenii hansenii	POS
DuPont	FS18.6	Whole Wheat Flour	Emericella nidulans	POS
DuPont	FS1.1	Oregano	Eurotium rubrum	POS
DuPont	FS52.1	Gingerbread Mix	Fusarium gramnearum	POS
DuPont	FS8.1	Waffle Mix	Fusarium proliferatum var. proliferatum	POS
DuPont	FS24.1	Cornmeal Yellow	Fusarium proliferatum var. proliferatum	POS
DuPont	FS40.4	Blueberry Muffin Mix	Mycospaerella aronici	POS
DuPont	FS54.1	Gluten Free Flour	Mycospaerella aronici	POS
DuPont	FS57.1	Dill	Mycospaerella aronici	POS
DuPont	FS29.2	Unbleached Flour	Penicillium camembertii	POS
DuPont	FS30.1	Cornbread & Muffin Mix	Penicillium camembertii	POS
	FS45.1	Flaxseed Meal	Penicillium camembertii	POS
DuPont				
DuPont	FS44.1	Oregano	Penicillium chrysogenium	POS
DuPont	FS59.3	French Thyme	Penicillium chrysogenium	POS
DuPont	FS10.1	Soy flour	Penicillum commune	POS
DuPont	FS66.1	Shelled Pecan Halves	Penicillum commune	POS
DuPont	FS62.1	Truffle Mix	Rhodotorula graminis	POS
DuPont	FS32.1	Chocolate Chip Cookie Mix	Saccharomyces cerevisiae	POS

Table 2. BAX system	m exclusivity (Yeast and Mola	/ assay) (1)	
Strain ID	Source	ID Species	BAX Result
ATCC19433	type strain	Enterococcus faecalis	Negative
ATCC13883	type strain	Klebsiella pneumoniae	Negative
ATCC13047	type strain clinical	Enterobacter cloacae	Negative
DD379	unknown	Bacillus subtilis	Negative
ATCC15313	rabbit	Listeria monocytogenes	Negative
ATCC6539	clinical	Salmonella typhi	Negative
ATCC9610	clinical	Yersinia enterocolitica	Negative
ATCC27664	unknown	Staphylococcus aureus	Negative
ATCC12706	cured meat	Lactobacillus viridescens	Negative
ATCC43889	human clinical	Escherichia coli	Negative
ATCC29930	human clinical	Shigella sonnei	Negative
7AS	poultry	Proteus mirabilis	Negative
ATCC13337	unknown	Hafnia alvei	Negative
DD2416	plant material	Serratia liquefaciens	Negative
ATCC43864	unknown	Citrobacter freundii	Negative
ATCC35654	unknown	Aeromonas species	Negative
ATCC33379	dead puffin	Edwardsiella hoshinae	Negative
DD3064	unknown	Morganella morganii	Negative
ATCC27853	human clinical	Pseudomonas aeruginosa	Negative
ATCC4356	human	Lactobacillus acidophilus	Negative
TD4523	unknown	Vibrio tubiashii	Negative
DD5425	Cheese	Listeria monocytogenes	Negative
DD3019	unknown	Salmonella dublin	Negative
DD3411	hamburger	Listeria welshimeri	Negative
DD3327	cheese	Listeria seeligeri	Negative
DD1979	hamburger	Escherichia coli O157:H7	Negative
DD9775	human clinical	Staphylococcus aureus	Negative
TD3136	unknown	Vibrio mimicus	Negative
DD1144	cheese	Listeria monocytogenes	Negative
ATCC8739	unknown	Escherichia coli	Negative

	Table 5 Method	performance for t	he detection of <i>Ye</i>	ast and Mold fro	m yogurt, mill	c-based infant for	mula, and cor	n starch by th	e BAX Systen	n. (1)	
Matrix and Organism	Target Level (cfu/g)	Actual Level	Total Samples (each treatment)	BAX Presumptive (# > threshold)	BAX Confirmed ¹	Reference Method (# > threshold)	Sensitivity % ²	Specificity %³	False Negative % ⁴	False Positive %5	X² Value ⁶
	Aggregate data	-	20	14	NA	14	NA	NA	0	0	0
	> 50	390	5	5	NA	5	NA	NA	0	0	0
Yogurt <i>A. niger</i>	10-50	53	5	5	NA	5	NA	NA	0	0	0
A. Higel	1-10	12	5	4	NA	4	NA	NA	0	0	0
	0	0	5	0	NA	0	NA	NA	0	0	0
	Aggregate data	-	20	12	12	10	100	100	0	0	0.39
Yogurt	> 50	54	5	5	5	3	100	100	0	0	2.25
(Independent Laboratory)	10-50	30	5	4	4	5	100	100	0	0	1.00
C. albicans	1-10	10	5	3	3	2	100	100	0	0	0.36
	0	0	5	0	0	0	100	100	0	0	0
Powdered	Aggregate data	-	20	14	14	10	100	100	0	0	1.63
Infant	> 50	172	5	5	5	5	100	100	0	0	0
Formula –	10-50	47	5	5	5	4	100	100	0	0	1.00
Milk-Based	1-10	7	5	4	4	1	100	100	0	0	3.24
S. cerevisiae	0	0	5	0	0	0	100	100	0	0	0
	Aggregate data	-	20	12	NA	11	NA	NA	0	0	0.10
Corn Starch	> 50	191	5	5	NA	5	NA	NA	0	0	0
P.	10-50	68	5	5	NA	5	NA	NA	0	0	0
chrysogenum	1-10	2	5	2	NA	1	NA	NA	0	0	0.42
	0	0	5	0	NA	0	NA	NA	0	0	0

¹ Fungi which grow as yeasts are able to be recovered from disrupter tubes. Since Fungi which grow as molds in solution grow as hyphal masses, no confirmation is possible.

⁵ False positive rate is calculated as BAX (+) Ref (-) / Tot Ref (-) samples (-) Mantel-Haenszel Chi-Square test statistic calculated for un-paired samples

(n-1)(ad-bc)²

² Sensitivity is calculated as 100% – false negative rate

³ Specificity is calculated as 100% – false positive rate

⁴ False negative rate is calculated as BAX (-) Ref (+) BAX enrichment samples / Tot Ref (+) samples

DISCUSSION OF MODIFICATION APPROVED JULY 2013 (4)

The results of the method comparison between the digital DuPont Thermal Block and the analog heating/cooling blocks are provided in Table 3 below. For all sample types and BAX System assays evaluated, the results for samples processed with the DuPont™ Thermal Block and the original heating/cooling blocks demonstrated no significant statistical difference as indicated by POD analysis (the 95% confidence interval of the dPOD included 0 in all cases). For additional figures illustrating the target responses of the individual BAX® System assays, see Appendix B.

All 544 samples inoculated with high levels of the target organism returned positive results with the BAX System using both sample preparation methods, and all 544 samples tested as unspiked negative controls returned negative results with the BAX System using both sample preparation methods with the exception of the non-inoculated poultry rinse samples that gave positive results for Campylobacer jejuni, while giving negative results for the target C. coli that was spiked into the test samples. For samples inoculated with low levels of target organism, the two preparation methods returned identical results for 530 of the 544 samples tested. The results for the 14 samples that returned different results between the two methods are summarized in Table 3. Because the low-spike samples were tested at levels near the limit of detection for the BAX System assays, some discrepancy between the two methods is expected based on factors such as the distribution of the target organism within the sample.

Analysis of target response in cases where a fractional response was not generated, while demonstrating significant differences from a statistical standpoint in some cases, were not indicative of any difference that would likely be significant in a practical sense. All average differences were less than 10% for melt curve-based target peak height or target peak area to target plus internal control peak areas (for the Yeast and Mold assay) and all average Ct differences were less than 1 for all real time assay.

Because the difference in results between the two methods demonstrated no significant statistical difference as indicated by the POD analysis, these differences are found to be acceptable in this study for demonstrating equivalency between the two methods.

BAX System	Sample	Spike	Test	Heating/Cooling Blocks			D	DuPont Thermal Block			95% CI ^e
Assay	Type	Level	Portions	Хa	POD _{2B} b	95% CI ^e	Xa	POD_{TB}^{c}	95% CI ^e	d	
										0	-0.18, 0.18
east and Mold	Yogurt	Low	17	12	0.71	0.44, 0.87	14	0.82	0.59, 0.94	-0.12	038, 0.1
Corr		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.18
	Cornstarch	Low	17	7	0.41	0.22, 0.64	6	0.35	0.17, 0.59	0.059	-0.24, 0.3
		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
	Powdered	High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
	infant	Low	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.1
formula	formula	Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.1

REFERENCES CITED

- Burns, Frank, Andaloro, Bridget, Fleck, Lois, Davis, Eugene, Tice, George, and Wallace, Morgan., Evaluation of the DuPont[™] Bax® System Test Kit for Detection of Yeast and Mold in Yogurt, Corn Starch, and Milk-based Powdered Infant Forumla, AOAC *Performance Tested Methods*[™] certification number 010902.
- Tournas, V., Stack, M.E., Mislivec, P.B., Koch, H.A. and Bandler R. 1998. Bacteriological Analytical Manual Online. Revised 4/2000. US Food & Drug
 Administration, Center for Food Safety & Applied Nutrition. Chapter 18, Yeasts, Molds and Mycotoxins. http://www.cfsan.fda.gov/~ebam/bam-18.html Date of
 Access 6 Jan 2009.
- 3. AOAC International Official Methods of Analysis Program Manual May 2002 Appendix X http://www.aoac.org/vmeth/Manual App X.pdf Date of Access 6 Jan 2009.
- Hoelzer, S., Wallace, F.M., Fleck, L, DiCosimo, D., Harris, J., Andaloro, B., Farnum, A., Davis, E., and Rohrbeck, J., Evaluation of the DuPont™ Thermal Block for Automated Sample Lysis with the BAX® System Method (Minor Modification), AOAC Performance Tested Methods™ certification number 010902. Approved July 2013.