

Savannah F. Applegate¹, Rossy L. Bueno Lopez², April K. Englishbey¹, Tyler P. Stephens¹, Stacy Stoltenberg¹, and Marcos X. Sanchez-Plata²

¹ Hygiena[®], 2 Boulden Circle, New Castle, DE 19720

²Texas Tech University, Department of Animal and Food Sciences, Lubbock, TX 79409

INTRODUCTION:

Inoculation level evaluation is needed prior to microbial challenge studies; however, traditional methods for enumerating inoculation levels, such as plate counts, take 24–48 hours for results. There is a need for alternative quantification methodologies with accurate results for pure culture estimations.

PURPOSE:

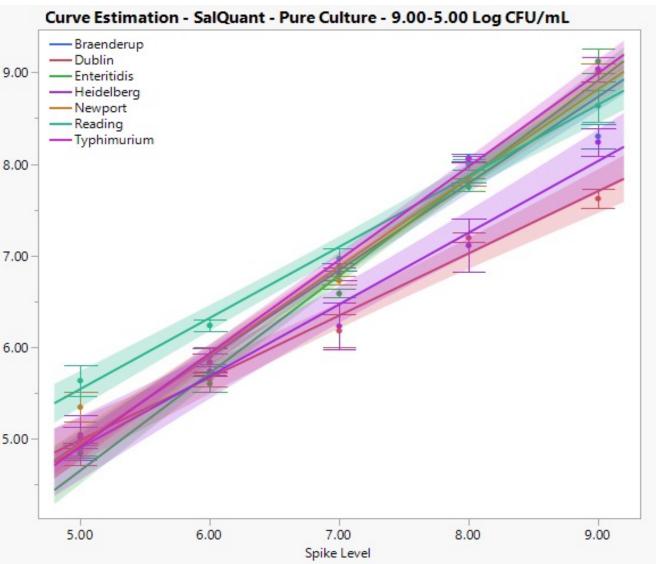
To develop a RT-PCR enumeration method to efficiently estimate the levels of 7 *Salmonella* serotypes, 3 *Vibrio* serotypes, 3 *Campylobacter* serotypes, *Escherichia coli* O157:H7, Genus *Listeria* and *L. monocytogenes*, respectively, in pure culture preparations.

Development and Verification of Salmonella, Vibrio, Campylobacter, Escherichia coli and Listeria spp. Pure Culture Estimations Utilizing Hygiena's PCR-Based Quantification Methodologies

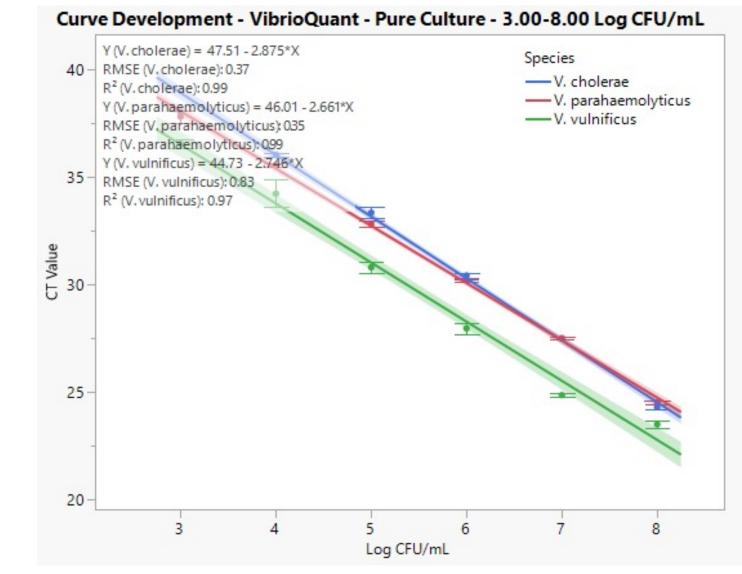
BAX[®] System Q7

METHODS:

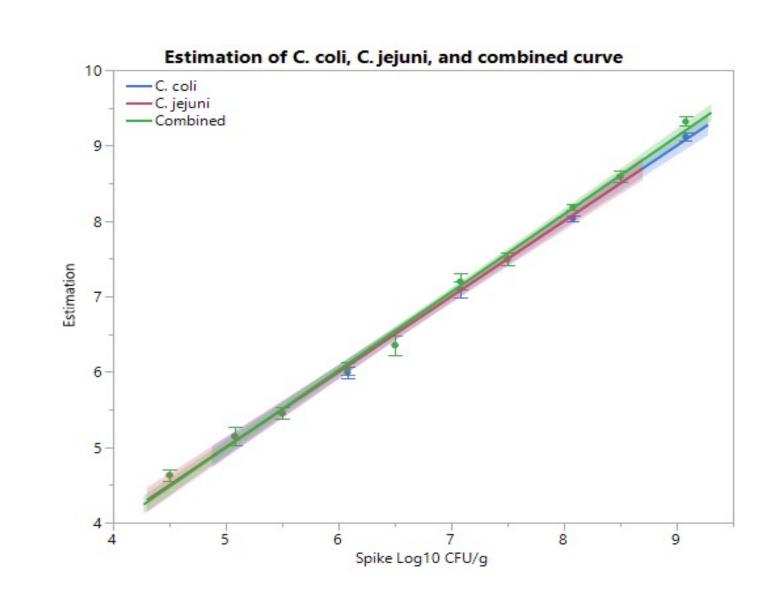
Pure cultures of *Salmonella* Braenderup, *S.* Dublin, *S.* Enteritidis, *S.* Heidelberg, *S.* Newport, *S.* Reading, and *S.* Typhimurium, *Vibrio vulnificus*, *V. cholerae*, *V. parahaemolyticus*, *Campylobacter jejuni*, *C. coli*, and *C. lari*, *Escherichia coli* O157:H7, *Listeria* genus and *L. monocytogenes* were grown in TSB (approximately 1 x 10⁹ CFU/mL) under individual growth specifications with three replicates per serotype. Serial dilutions, 1 mL into 9 mL BPW, were performed on each culture and 10⁹ to 10⁵ on 1 Log CFU/mL incremental dilutions were evaluated in quintuplet using the BAX® System assays for *Salmonella*, *Vibrio*, *Campylobacter*, *E. coli* Exact, Genus *Listeria*, and *Listeria monocytogenes*. Cycle threshold (CT) values were grouped by genus and a linear-fit equation utilized for quantification was created using JMP® v. 15.


RESULTS:

The system detected and enumerated 10⁹ to 10⁵ Log CFU/mL for *Salmonella* (SalQuant®) *Vibrio* (VibrioQuant™), *Campylo-bacter* (CampyQuant™) *E. coli* O157:H7 (E.coliQuant™), and *Listeria* (ListeriaQuant™) in pure cultures. All linear fit equation estimations met statistical parameters (R² from 0.90 – 0.98 and Log RMSE from 0.14 to 0.39) and statistically compared to plate counts on a 95% confidence interval.


Table 1. Curve Development Parameters of Salmonella, Vibrio, Campylobacter, E. coli O157:H7, and Listeria spp. Pure Culture Estimations

Pathogen		Log RMSE*	Enumerable Range
Salmonella	0.90	0.14	5.00 - 9.00 LogCFU/mL
Vibrio	0.95	0.39	3.00 - 8.00 LogCFU/mL
Campylobacter	0.85	0.47	4.50 - 9.00 LogCFU/mL
E. coli O157:H7	0.98	0.23	4.00 - 9.00 LogCFU/mL
Listeria	0.90	0.27	3.00 - 9.00 LogCFU/mL


*Log Root Mean Square Error

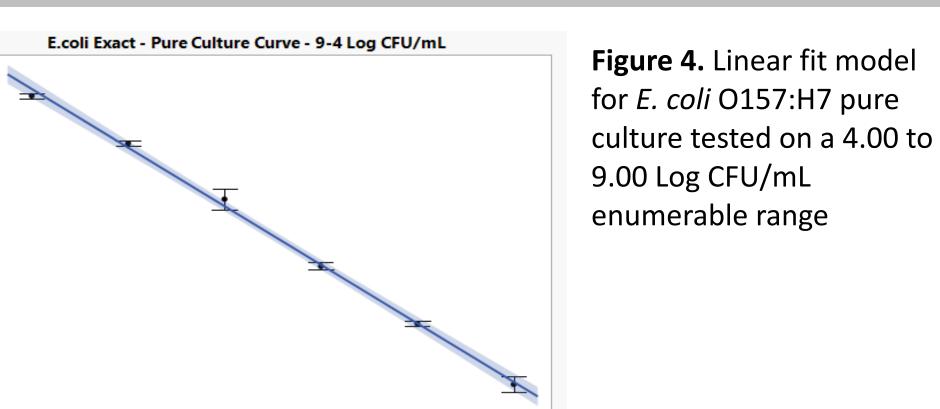

Figure 1. Curve estimations of 7 *Salmonella* serotypes by inoculation level using the BAX System RT-PCR assay for *Salmonella*

Figure 2. Linear fit model for *Vibrio* pure culture tested on a 3.00 to 8.00 LogCFU/mL enumerable

Figure 3. Curve estimations of 3 *Campylobacter* serotypes by inoculation level using the BAX System RT-PCR assay for *Campylobacter*

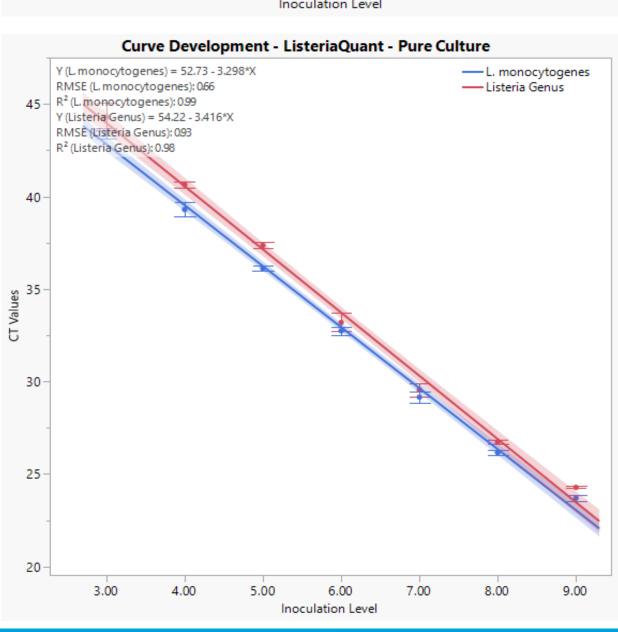


Figure 5. Linear fit model for *Listeria monocytogenes* pure culture tested on a 3.00 to 9.00 Log CFU/mL enumerable range

SIGNIFICANCE:

A rapid PCR-based enumerative method with pure culture testing capabilities provides the microbiological and the food industry with a tool to reduce the time-to-results to confirm inoculation levels and less variation when conducting challenge studies and making data-driven food safety decisions.